Efficient photosynthesis of carbon monoxide from CO2 using perovskite photovoltaics

نویسندگان

  • Marcel Schreier
  • Laura Curvat
  • Fabrizio Giordano
  • Ludmilla Steier
  • Antonio Abate
  • Shaik M Zakeeruddin
  • Jingshan Luo
  • Matthew T Mayer
  • Michael Grätzel
چکیده

Artificial photosynthesis, mimicking nature in its efforts to store solar energy, has received considerable attention from the research community. Most of these attempts target the production of H2 as a fuel and our group recently demonstrated solar-to-hydrogen conversion at 12.3% efficiency. Here, in an effort to take this approach closer to real photosynthesis, which is based on the conversion of CO2, we demonstrate the efficient reduction of CO2 to carbon monoxide driven solely by simulated sunlight using water as the electron source. Employing series-connected perovskite photovoltaics and high-performance catalyst electrodes, we reach a solar-to-CO efficiency exceeding 6.5%, which represents a new benchmark in sunlight-driven CO2 conversion. Considering hydrogen as a secondary product, an efficiency exceeding 7% is observed. Furthermore, this study represents one of the first demonstrations of extended, stable operation of perovskite photovoltaics, whose large open-circuit voltage is shown to be particularly suited for this process.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preparation of Lanthanum–Nickel–Aluminium Perovskite Systems and their Application in Methane-Reforming Reactions

In this study we developed LaNixAl1-xO3 perovskite systems using a sol-gelmethod (with propionic acid as solvent) to use in methane-reforming reactions for producing synthesis gas. To understand the roles of the nature of the precursor and calcination conditions on the formation of LaNixAl1-xO3, we carried out identifications using NMR, FT-IR, XRD, SEM, and TEM. The precursor struc...

متن کامل

Optimal recovery of regional CO2 surface fluxes by data assimilation of anthropogenic and biogenic tracers

Measurements of atmospheric carbon dioxide (CO2) have led to an understanding of the past and present CO2 trends at global scales. However, many of the processes that underlie the CO2 fluxes are highly uncertain, especially at smaller spatial scales in the terrestrial biosphere. Our abilities to forecast climate change and manage the carbon cycle are reliant on an understanding of these underly...

متن کامل

Artificial photosynthesis on tree trunk derived alkaline tantalates with hierarchical anatomy: towards CO2 photo-fixation into CO and CH4.

Artificial photosynthesis, the photochemical fixation and recycling of CO2 back to hydrocarbon fuels using sunlight and water, is both a significant challenge and an opportunity that, if realized, could have a revolutionary impact on our energy system. Herein, we demonstrate one of the first examples using biomass derived hierarchical porous photocatalysts for CO2 photo-fixation into sustainabl...

متن کامل

Structural, Magnetic and Catalytic Properties of Non-Stoichiometric Lanthanum Ferrite Nano-Perovskites in Carbon Monoxide Oxidation

Perovskite-type oxides of LaFe(1+x)O(3+δ) (x = 0.0, 0.2, 0.5 and 0.7) were synthesized by citrate sol–gel methodto ensure the formation of nanosized perovskites. The physicochemical properties of these LaFe(1+x)O(3+δ)materials were characterized by thermal gravimetric/differential analyses, Fourier transform infraredspectroscopy, X-ray powder diffraction, scanning electron and...

متن کامل

Leaf-architectured 3D Hierarchical Artificial Photosynthetic System of Perovskite Titanates Towards CO2 Photoreduction Into Hydrocarbon Fuels

The development of an "artificial photosynthetic system" (APS) having both the analogous important structural elements and reaction features of photosynthesis to achieve solar-driven water splitting and CO₂ reduction is highly challenging. Here, we demonstrate a design strategy for a promising 3D APS architecture as an efficient mass flow/light harvesting network relying on the morphological re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015